CAPITULO 2: Sensor y Captura de imagen

Sensor de ImagenViniendo del primer capítulo en este cursillo de fotografía digital, recordemos que las cámaras digitales tienen en su interior una matriz de receptores de rayos de luz. Estos receptores registran la intensidad de los rayos de luz que les impactan, provenientes del lente de la cámara.

Esta matriz es muy pequeña (por ej: de 1cm x 1 cm) y consta de miles y millones de receptores independientes. A la matríz le llamaremos «sensor de imagen«. Veremos con detalle esto y los distintos tipos de sensores de imagen que se utilizan hoy en día, a continuación.

Cada receptor de imagen que captura y registra la luz se convertirá más tarde en un punto de nuestra fotografía. A cada punto se le denomina PIXEL.

Sensor de imagen

Dependiendo de la cantidad de receptores independientes que tenga el sensor de imagen, será, la calidad y detalles con la que va a capturar la imagen cuando fotografiamos.

Esto es fácil de visualizar con el siguiente ejemplo: Imagínate que queremos sacar fotos de una pelota y tenemos un sensor compuesto por una matriz de receptores de luz de 6 x 6 celdas.

Ejemplo de la Pelota

La pelota se encuentra alejada, de tal forma que solamente 4 celdas «ven» los rayos de luz que rebotan de la pelota. La “imagen capturada” (o sea lo que distingue el sensor de imagen) es un cuadrado.

Si acercamos nuestro sensor de imagen de 6×6 celdas a la pelota, la luz reflejada en ella se registrará en una mayor cantidad de celdas y la forma (definición) de la pelota se aproximará a una forma redonda.

Como conclusión podemos decir que cuanto mas cerca está el objeto que queremos fotografiar de nuestra cámara y/o cuanto mas capacidad de registro tenga el sensor de imagen, mas detalle puede capturar.

Sin embargo la capacidad de diseñar sensores de imagen con gran densidad de píxeles en poco espacio no ha podido resolver un problema -sumamente técnico- de interferencia eléctrica entre ellos mismos.

Este ruido electrónico redunda en falsas lecturas, lo que a su vez degrada (a veces notoriamente) la calidad de la fotografía. Por contrapartida, si el sensor fuera más grande, se necesitaría delante de él un lente más grande también para cubrir toda su área, mayor consumo de energía, y por cierto es más caro de producir.

Del blanco y negro al color

El sensor de imagen captura solamente la luminosidad de cada pixel, por lo que estrictamente hablando, la imagen que captura es en blanco y negro (esto puede ser una sorprendente revelación, pero es cierto).

Tomando en cuenta que a partir de los 3 colores básicos (verde, azul y rojo) se puede formar cualquier color, entonces las cámaras digitales se aprovechan de esto y ponen por encima de su sensor de imagen un filtro de color básico puesto encima.

Filtro Bayer de colores

Filtro BayerEste filtro fue inventado por Bryce Bayer y se le denomina Filtro Bayer. Funciona así:

El sensor de imagen que ve en blanco y negro se representa con la superficie gris.

El filtro Bayer, situado por encima, deja pasar a los rayos de luz en forma intercalada a cada pixel del sensor el rojo, azul y verde (el doble de verde, dado que el ojo es particularmente sensible al verde).

De esta forma se termina con una representación de la imagen original, siempre en degradé de blanco y negro, pero filtrada por los tres colores primarios, en ese patrón de tablero de ajedrez multicolor.

La cámara, con una serie de algoritmos complejos, procesa estas tres vistas monocromáticas, sabiendo que píxel representa cada color primario, y sumando así los tres colores primarios por cada grupo de 4 pixeles y recomponiendo de esa sumatoria  la información cromática original.

foto cruda en filtro BayerNota por favor que si bien la imagen original, en cuanto a la luminancia (en blanco y negro) fue capturada por todos los pixeles del sensor de imagen de tu cámara digital, luego al computar el color real para pintar esos píxeles, la historia es bien distinta.

Reiteramos: La computadora interna de tu cámara de fotos tuvo que procesar los degradés en verde, azul y rojo de 4 píxeles (recuerda que el verde utiliza dos pixeles, por cada pixel de rojo y azul) para generar el color «general» de esa área de 4 píxeles.

Dicho de otra forma, gran parte de los colores que muestra tu cámara digital, fue extrapolado de la -relativamente- escasa información cromática disponible: La información real cromática es solamente 1/4 de la información del total de los píxeles de la cámara.

 Alternativa 1: Tres sensores de imagen

3 sensores de imagenComo alternativa  de calidad superior al mecanismo de los filtros BAYER que vimos aquí arriba,  las mejores cámaras de video (nunca vi en fotografía, pero es bastante común en video, en las cámaras profesionales, y algo básico para las cámaras para televisión) usan 3 sensores de imagen al mismo tiempo. Cada sensor de imagen registrará la imagen completa, filtrada por un color primario distinto.

Para «repartir» la imagen que entra por el lente de la cámara entre los tres sensores, se coloca un prisma de cristal cortado de tal manera que reparte los rayos de luz en tres direcciones distintas. De esta manera la imagen se captura con mejor resolución de color, al mismo tiempo en los tres colores primarios.

El problema es que al dividir la luz que entra por el lente en tres caminos distintos, efectivamente a cada camino llega 1/3 de la luz, lo que genera problemas al usar estas cámaras en condiciones de luz inferior. En la práctica, la diferencia de calidad de una cámara de 3 sensores es notoriamente superior, contra una de un solo sensor. Pero lamentablemente en fotografía, esa disminución de sensibilidad a la luz, no tiene andamiento.

Alternativa 2: Sensor de imagen FOVEON

Sensor de imagen FOVEONEsta es una alternativa elegante, y es un nuevo tipo de sensor, que se diseño en la época de los 90, en USA, denominado FOVEON. Replica con más exactitud el comportamiento del ojo humano, y en un mismo sensor de imagen, tiene la habilidad de ver los tres colores primarios en cada pixel.

Simplificando su funcionamiento, es como si fueran tres sensores separados, pero están montados uno arriba del otro.  Cada sensor recoge los rayos de luz cuya frecuencia coincide con su color primario y deja permear el resto de la luz hacia el sensor que le sigue más abajo.

De esta manera, todos los rayos de luz son procesados, en un mismo sensor y esto trae aparejado una infinidad de ventajas. Por ejemplo hay 0 desalineamiento entre cada color y es mucho mas robusto a golpes. La calidad es INCREIBLEMENTE MEJOR, y hasta podríamos decir que el resultado es la versión sintética de cómo se comportaban las películas de rollo para cámaras analógicas.

CAPITULO 1: Capturando los rayos de luz

Camara de FotosSi estás buscando un cursillo de fotografía digital, aquí te exponemos una serie de capítulos que no tienen otra pretensión más que llevarte desde la fotografía casual o espontánea hacia aguas más profundas.

Si le tomas el gusto a sacar fotos y te conviertes en fotógrafa ó fotografo aficionado,  entonces consideramos nuestra misión como cumplida.

Este trabajo es pasible de muchas mejoras, y también está abierto a cualquier duda o comentario, debajo de cada capítulo, en el área de mensajes. Espero tu intervención constructiva allí asi juntos podemos mejorar este material educativo. Comencemos pues con algunos conceptos, la parte aburrida de todo cursillo, pero necesaria:

¿ Que es la luz ?

A los efectos prácticos podemos entender a la luz como una serie prácticamente infinita de rayos, emitidos por una fuente de luz (ej: el Sol o una lámpara).

Estos rayos de luz viajan (bueno… ¡A la velocidad de la luz!) hasta chocar contra un objeto. Dependiendo de la superficie del objeto, nuestros rayos viajeros rebotarán (total o parcialmente).

Estos rayos de luz vibran en diversas frecuencias y cada frecuencia corresponde a un color. Las fuentes de luz que percibimos como blancas se debe a que sus rayos se emiten en una cantidad de frecuencias (colores).

Suma de ColoresTodos los colores, sumados, dan como resultado luz blanca. Esto se confirma en la escuela, cuando nos han hecho pintar un molinete con los colores del arcoiris, y al hacerlo girar, esos colores se diluyen en blanco. ¿Recuerdan haber hecho este experimento?

Volvemos a los rayos de luz, que han rebotado en una superficie. Esa superficie absorberá parte de los rayos, mientras que otros rebotarán. SI absorbe todos los rayos, el objeto lo veremos de color negro (ausencia de rayos de luz). Dependiendo de los colores que reboten desde la superficie del objeto y terminen entrando en nuestros ojos, el color que percibiremos.

Dicho de otra manera, cuando pintamos un objeto con pintura color azul, en realidad estamos colocando una superficie especialmente diseñada para absorber todos los rayos de luz SALVO los del rango de frecuencia correspondiente al tono de azul que elegimos para nuestra pintura.

¿ Qué es una cámara fotográfica?

Es un aparato  que canaliza a través de una lente todos los rayos de luz que pasan a través de ella hacia un espacio, al fondo de la cámara.

Camara de fotos de rolloEn ese espacio existe algún medio de registro sensible a la luz. Este medio será capaz de registrar fielmente el impacto de los rayos de luz con sus frecuencias.

Las cámaras de rollo usaban una tira de celuloide con una serie de productos químicos en formas de cientos de miles de partículas que al recibir el impacto de los rayos de luz, reaccionaban, quedando de esa forma registradas las fotografías.

Cámara fotográfica digital

Las cámaras digitales utilizan para registrar los rayos de luz una matriz de millones de receptores (como si fueran mini ojitos). Cada receptor reacciona y registra la intensidad del rayo de luz que le impacta.

A esta matriz de celdas sensibles a los fotones (rayos de luz), se le denomina SENSOR DE IMAGEN.

Sensor para capturar imágenes

Dependiendo de la cantidad de receptores independientes que tenga el sensor, será la cantidad de información que podemos obtener en el registro de la imagen. Hasta aquí llegamos en este primer capítulo! Si hay dudas, o ideas para mejorar este texto, utilicen el área de comentarios aquí debajo.